Friends of the Science Pod: Keys to successful (science) podcasting

Image of a microphone with the text "Science Podcasting"

Report on the session “Friends of the Science Pod: Broadcasting, outreach and professional networking” at the 2020 meeting of the Americal Association for the Advancement of Science (AAAS2020)

There’s no way around it: podcasting is the-new-thing. And for science communicators, podcasting sounds like a perfect way to participate in science communication, with the potential to reach audiences across borders and disciplines. During the annual meeting of the American Association for the Advancement of Science, Dr. Christopher Lynn (Department of Anthropology, University of Alabama), Dr. Sarah Myhre (Executive Director of the Rowan Institute Seattle; 500 Women Scientists), and Dr. Jo Weaver (Department of International Studies, University of Oregon) gathered together to talk about public scholarship, advancing your scientific career on the sound waves, and the ins and outs of podcasting. For science.

Public Scholarship: science is political

Dr. Sarah Myhre, cohost of “Warm Regards” – a podcast about the warming planet, started off the discussion by introducing the concept of being a public scholar. A researcher is embedded in society, and it is therefore impossible to be apolitical. Following the path paved by women of color, Sarah urged us to participate in public scholarship, rather than science communication.

While science communication is by no means unimportant – it brings science closer to communities by making researchers more personable, teaches academics to use clear language and stay clear of jargon, while conveying accurate information from a position of scientific authority – it has some limitations. For one, it lacks a thorough analysis of power. Science communication, in some forms, can be too much of a one-way street.

With public scholarship, however, being in conversation with the community is a central pillar. It takes into account that talking in public spaces makes the untrue assumption that anyone can engage, without taking into account that there is a higher barrier for people from marginalized communities. There are different ways to achieve public scholarship, such as organizing and hosting events, podcasting, writing Op-Eds, and moderating panels.

When creating media – such as a podcast or an OpEd – one should expect a deeply inequitable landscape and be actively countering the harm around you.

Sarah closed off her part of the session with an exercise for the audience: one person was to tell a story while the other actively listened but without showing any form of expression or acknowledgment. It was very uncanny not to receive any body language cues. Very useful though, for in a podcast, the audience is not there to provide direct feedback!

Why Podcast?

There are several reasons to start a podcast, even in the sea of the already so many existing ones! Dr. Christopher Lynn, who co-hosts a podcast on human biological variation in evolutionary, social, historical, and environmental context called “Sausage of Science,” started his talk by pointing out that “the world doesn’t need anything more than what it already has but they might like it anyway?”

Image of a microphone with a quote from Dr Christopher Lynn: " the world doesn't need anything more than what it already has, but they might like it anyway?"

A first valid reason to start a podcast is to propagate good science. But you might also want to promote yourself and gain recognition that can help enhance and advance your career. For grants, podcasting might count as a broader impact. Furthermore, through podcasting, you will build useful, transferable skills. Chris jokes: “Take the scientific approach: do everything once and then hire someone to do the things you don’t like.”

Dr. Jo Weaver, who hosts “Speaking of Race” – a podcast on racial science, chose the topic of her podcast after realizing that racial science was not really being taught anywhere. When they started their podcast, they brainstormed topics while asking the question: What do we think listeners want to hear? – and the rest followed. With 12 topics, the first mini-series was planned out. Because planning is crucial to maintain continuity throughout a podcast series. 

Jo went into some podcasting production details, including making the choice between doing an interview – or content-based podcast. Interviews require less preparation but are considerably harder to edit afterwards. Content-based podcasts are the opposite: there is more preparation required but once you follow a script, there is less editing work to do. And going for a hybrid basically requires a full production team. 

Advancing your career through podcasting

Jo continued by telling us her journey to getting her podcasting efforts more recognized at her institution. It is the general feeling that “If you’re on the tenure track, you need to be publishing.” From the university’s side, podcasting is not really considered a form of scholarship, so there’s no incentive to support it. It is one of those activities that institutions like to “brag” about when it’s successful, but not incentivize from the start.

However, there are several ways to get a podcast count towards an academic record. There are two main options:

  1. Turning content into a more traditional format, including an editing volume, theoretical (methodology) or research articles, “popular” academic writing.
  2. Convincing your institution that podcasting is a useful medium that counts as a teaching and research tool. 

Towards the second point, podcasts can be “peer-reviewed,” not only through their popularity rating but also by getting peers to review scripts or write letters of endorsement. To get your university to pay attention, it is helpful to find a supportive admin, lobby your institution as a group, and/or negotiate upfront in your contract.

The importance of having a brand

The session ended with Chris talking about networking and branding. He pointed out that he, as a tenured, white male, had an easy time doing things without fear and repercussion. Nevertheless, putting your research out in the public is a worthwhile endeavor. 

He paralleled his experience as a podcaster and a blogger. Through writing a lot (for a blog), you get a lot better at writing. Keep in mind that it is very likely that there will be more people reading your blog – or listening to your podcast – than reading your journal article! Blogs and podcasts allow you to build a platform. If you ever go to an editor to write a book, coming with a built-in audience will strengthen your case.

From a practical point of view, Chris advised us to think like a journalist: follow leads, use “strings” to create a narrative appeal, make sure you have an attention grabber (a “hook”) and know that both quality and quantity are important. High production quality, such as editing and sound for a podcast, will ensure that your audience sticks with you. And by putting out a high quantity of content, people will be more aware of you.

So – should you start a podcast?

That’s up to you! In any case, the session was informative, relaying tons of practical tips on how to be effective at podcasting – and thought-provoking – bringing up interesting discussions around public scholarship and non-traditional forms of publication. I would highly recommend to go listen to some podcasts, and see if you can find your niche!

Towards more inclusive scicomm

Report on the session “Building Community for Inclusive Public Engagement with Science” at the 2020 meeting of the Americal Association for the Advancement of Science (AAAS2020)

Many researchers and institutions participate in public engagement, including organizing public outreach activities and science communication events to help bridge the gap between science and the community. Unfortunately, too often parts of the community are not reached. Only people who are already interested in science come to a public talk, school outreach activities reach schools in more privileged areas, and the needs of communities are not taken into account when developing engagement projects.

Live sketch during the session by Alex Cagan

During the session on “Building Community for Inclusive Public Engagement with Science,” held on Thursday, February 13, 2020, during the American Association for the Advancement of Science’s (AAAS) annual meeting, this exact topic was addressed. The session was moderated by Sunshine Menezes (Metcalf Institute for Marine and Environmental Reporting, Kingston, RI), who introduced the speakers and outlined the scope of the panel: how we can be more intentional, reciprocal and reflexive in working towards more inclusive science communication. Those three words summarize the key traits of science communication:

  1. Intentionality: Are we actively thinking about who the target audience is and whether their identities and histories are being represented?
  2. Reciprocity: Are we learning from each other? Are the conversations based on what people bring rather than what they lack?
  3. Reflexivity: Are we evaluating our science communication strategies?

All three points came back in some form in three talks during the session.

Supporting Culture and Identity – Carrie Tzou

The first speaker, Carrie Tzou (University of Washington, Bothel, WA) spoke about supporting culture and identity in science education with equity-focused engagement. What educators should remember is that “when people enter into the practices of science and engineering, they do not leave their cultural worldviews at the door. Instruction that fails to recognize this reality can adversely affect engagement in science” [NRC, 2012, p. 284].

Learning is essentially cultural: what a person learns and how they learn depends on the community they are from. As a Western society, we often forget that for people of different cultures to learn our science, they also have to learn our culture!

Carrie Tzou outlined some strategies for learning that can be implemented to ensure that culture and identity are supported during learning. These include self-documentation, partnerships, and self-assessment. As an example of self-documentation, she told us about a project where students were given prompts, such as “how does your family use water?” to go take pictures in their daily life. This approach connects family and community to learning while broadening the definition of “what counts as science.”

By expanding what constitutes “science” – who does science, what counts as science, and in what contexts – personal identities and culture are supported in learning. Everyone can identify as a scientist and achieve scientific discoveries. As a final point, seeing science as part of justice movements offers new possibilities to understand the relationship between science, equity, and justice.

Seeing Yourself in the Data – Monica Ramirez

Monica Ramirez (University of Arizona, Tucson, AZ) showed us some participatory research projects she had worked on: co-created environmental health citizen science. She worked with “promatoras” – professionals with a similar cultural background as the person you’re trying to reach, helping to bridge the gap between “ivory tower researchers” and the community. In order to develop a successful citizen science project, she had the following tips:

  1. People want to participate if there is a community need, not just for the “advancement of knowledge.” Let the research question stem from the community, as solving a community-identified problem will contribute highly to the motivation of participants.
  2. Build meaningful relationships, by implementing personal support structures and peer education models (cfr. promatoras).
  3. Consider that participants might have limited time and/or access to technology, and incorporate this in the study design.

Equity Oriented Practice in Pre- and Early Career SciComm Professionals – Rabiah Mayas

Finally, Rabiah Mayas from the Museum of Science and Industry (MSI, Chicago, IL) gave a museum-perspective to creating inclusive scicomm. At the MSI, there is a training program for STEM graduate students who want to get into science communication. 

The program structure is inspired by traditional teaching education: initial academic preparation, supported practical experience in the classroom, and finally a lead educator position. In the scicomm space, this looks like training in best practices and K-12 teaching, as well as improvisation exercises. Participants are then allowed to try out their newly learned skills in the museum, allowing space to fail – because you only get good by failing! 


While the world of STEM and scicomm is looking more and more diverse, we still have a long way to go. By building comfort around the language of inclusivity, creating spaces where it’s safe to have these “uncomfortable” discussions, stay aware of our personal identity while pursuing science, we can move towards more inclusivity and diversity. The three speakers of the session have definitely shown it can be done. 

Recommended reading:

Informal Science’s toolkit for science engagement professionals:

Perspective article on a critical approach to science communication:

Engaging diverse citizen scientists:


Make ’em Laugh

Report on the session “Make ’em Laugh: Science Comedy to Ignite Curiosity and Increase Self-confidence” organized by the Marie Curie Alumni Association at the 2020 meeting of the Americal Association for the Advancement of Science (AAAS2020)

Science is the pursuit of knowledge. But what is the point of research if this knowledge is not communicated to others? Comedy is one way to connect people, and it could be the key to bridge the science community with a society that is often susceptible to fake news and clickbait. 

At the annual meeting of AAAS, which took place from February 13–16, 2020 in Seattle, we organized a workshop to learn how to make people laugh with, and sometimes at, science. The session was organized by Valentina Ferro (Vice-Chair of the MCAA) and Valerie Bentivegna (Chair of the MCAA Communication Workgroup) and was facilitated by Adam Ruben (American Association for the Advancement of Science, Washington, DC) and Matthew Murtha (MCAA). 

Here are some of the take-home messages.

Comedy — the “rules”

Comedy, like many forms of entertainment, has some formulas that are guaranteed to work. Okay, I’m lying here. But there are some general rules that seem to help when working on a joke.

One format is “the list of three.” Lists of three are quite common in storytelling, and in comedy, this can be by surprising the audience on the third item with a twist. Let’s take the example from The Dick Van Dyke Show

“Can I get you anything? Cup of coffee? Doughnut? Toupee?” 

A cup of coffee is an ordinary thing to offer someone, and so is a donut. But it’s the third element that takes the audience by surprise and makes them laugh. The element of surprise is the other big part of comedy: keep the audience on their feet.

On the other hand, being too formulaic or too predictive can work against you. It might be better to just be silly, remember to have fun, and break the rules if they don’t work for you!

Bring comedy into your “boring” science presentations

I’m not saying science presentations are always boring, but let’s be honest, often they are. Bringing in some comedy into your science can be a way to lighten things up, but you might want to be careful when you’re early in your career. A close-to-pension, established, tenured scientist with nothing to prove can easily add humor into their talks without sounding unprofessional, but, as an early career scientist, you don’t want the humor to undermine your scientific message.

However, there are some tools from stand-up comedy that can help with your science talk:

  1. A microphone is not a wand. Don’t wave it around like you expect a Patronus to come out of it. Microphones work best when they are held an inch from your mouth, and you can help anchor it by placing your thumb on your chin or directly putting the mic on your chin. On a microphone note: use it! Don’t think the back of the room can hear you if you “project your voice,” not to mention that there might be some hard of hearing people that rely on you speaking through the microphone.
  2. Practice. Practice. Practice. You can be nervous to speak in front of a room full of people, but you should not be nervous about forgetting what you’re going to say.
  3. Communicate and connect with your audience. A good way to do this is by going into a talk with the motivation that you have something fascinating to tell, not because you have to.
  4. Use your slides wisely. Mostly images, bullet points for the rest. There are plenty of online resources to help you create amazingly effective (or effectively amazing) slides, find one that works for you!
  5. Constantly be thinking about what the room is thinking. Don’t be the last person to know something odd happening in the room. If something falls, or your projection is cutting out, or anything else is happening that the audience can’t help but miss, don’t ignore it.

So how can you put some humor in your science talk without overdoing it? Use the element of surprise: an unexpected funny photo or meme could get you some laughs without distracting from your data.

One final point

The best advice anyone can ever give is to be likable. Be authentic and relatable. And if you do want to go into comedy, just do it. Often. Go to open mics and try out your stuff. You will bomb sometimes, but it’s by failing that you’ll get better!

Want the learn more about #ScienceComedy? Depending on where you live, there are plenty of opportunities to work on your stand-up skills or just learn how to implement comedy into your science! Some examples are:

This post was originally published on the Marie Curie Alumni Association Medium Page.

COVID-19 information resources

The world seems exceptionally quiet today. Seattle feels like there’s been another #SnowPocolypse; streets are nearly empty, traffic is virtually non-existent, and grocery stores have somehow run out of seemingly arbitrary things. I’m talking toilet paper, y’all.

With the rapid stream of information coming in, I’ve found it very hard to gather my thoughts on SARS-CoV2 and COVID-19. How do I stay up-to-date without going into a chronic state of panic?

I don’t have an answer, but here are some resources that I have found helpful*:

The general guidelines to avoid community spread are to:

  • wash your hands thoroughly and frequently (we all know some 20-second -chorus songs by now)
  • maintain social distancing (introverts, rejoice!)
  • avoid touching your eyes, nose (which is somehow completely impossible)
  • cough or sneeze into your elbow
  • stay home if you feel sick
  • DON’T BE RACIST (can’t believe it has to be said)

So yeah, go wash your hands, take care of yourself and each other, and don’t panic.

I said, don’t panic!

* List will be updated as time goes along.

** I’m sorry, here’s the actual link to the World Health Organization.

Geek vs Nerd

No, this is not an epic battle. It’s a question that has been bugging me for the past week or two:

What is the difference between a geek and a nerd?

According to Big Think: ‘the words “nerd” and “geek” are often used interchangeably, as if they mean the same thing. They actually don’t: geek – An enthusiast of a particular topic or field. … nerd – A studious intellectual, although again of a particular topic or field.’

But then, “Harry Potter Nerd” sounds a lot better than “Harry Potter Geek,” and I’d like to know which one I am!

And then there was a website claiming that geeks are “socially adapted” nerds. Which I don’t really like as an explanation so I’m ignoring it.

So I asked my friends, and I asked twitter, and I was none the wiser. It seemed that about 50% of the people I know adhere to the description from Big Think above: nerds are the more “academic” of the two. The other half of my friends claim it’s exactly the opposite! Tech geeks, all of them!

A fellow nerd comedian (self-described) said that he uses them interchangeably, “Mainly because that’s how I was described in grade school. Nerd. Geek didn’t show up for me until college.”

Another interpretation was given by David Ashlin on Twitter: “Going by the, admittedly apocryphal, etymology that GEEK=General Electrical Engineering Knowledge, I always differentiated it by theoretical vs practical, as in nerds know things while geeks know how to do things.” What a nerd.

Another source used twitter data to differentiate the two, and created a graph with words commonly associated with “geeky” and “nerdy.” Apparently technology and comic books follow under the geek name while science pursuits, books, and education are more for nerds.

Geek vs Nerd

He summarizes: In broad strokes, it seems to me that geeky words are more about stuff (e.g., “#stuff”), while nerdy words are more about ideas (e.g., “hypothesis”). Geeks are fans, and fans collect stuff; nerds are practitioners, and practitioners play with ideas. Of course, geeks can collect ideas and nerds play with stuff, too. Plus, they aren’t two distinct personalities as much as different aspects of personality. Generally, the data seem to affirm my thinking.

I still don’t really know the answer. I consider myself both, depending on the situation but don’t ask me what exactly the differentiating situations are…

What do you think? What is the difference between a geek and a nerd? Share your view in the comments or on the original post on twitter.


Singing for self-care

We’re standing in a circle, hands held and eyes closed. Breathing in and out, connecting to our heart-center, connected with everyone else in the room. After a squeeze, sending our energy to our neighbors, we start moving around the room, chanting.

Have I joined a cult?

No – I’ve joined a choir. And being in a choir is pretty amazing.

Singing is good for you

Singing is healthy for many reasons: physical, hormonal, psychological,…

Employing proper singing techniques and breathing is like a little workout for your lungs and diaphragm. And like other forms of exercise, singing releases endorphins in your brain. Heard of a runner’s high? Singing can give you a singer’s high!

Singing also affects other hormones in your body. For one, it decreases the levels of cortisol, one of the main stress hormones, in your blood. A singing-life is a stress-free life! Music (both listening to music and creating music) also releases both dopamine and serotonin, two hormones closely linked to happiness. Dopamine helps regulate the brain’s pleasure and reward centers, while serotonin is involved in regulating mood and social behavior, appetite and digestion, sleep, and memory. Basically, singing, whether alone in the shower or while driving a car, in a karaoke bar, or in a group hits all the happiness hormones!

The health benefits of singing are not just hormonal. Employing a correct singing technique can also improve your posture: sitting or standing hunched does not help your tone. By having to stand up straight, you’ll teach your muscles proper posture! Health benefit numero dos!

There is also some evidence that singing can help reduce snoring and sleep apnea – essentially making you (and your bed partner) sleep better!

Choir director leading a choir
Deeji Killian directing the Northwest Firelight Chorale
Photo Credit: Jonathan Vogel

Singing with other people is even better for you!

Studies also show that singing in a choir is good, not only for your mood (see all the happiness hormones listed above) but also for your immune system! After taking part in an amateur choir rehearsal, participants of the study showed an increased presence of immunoglobin A, indicating that their immune system is up and healthy!

A more anecdotal effect of singing in a choir is the increased sense of community. This doesn’t only count for choirs, but for other social hobbies you might have. Feeling like you belong is good for you!

Singing is good for you – no matter your age!

From when you’re a little babbie to in your old age, all the health benefits above are valid! The brains of babies that are exposed to singing early in their life are being prepared for learning language. In addition, singing has a positive effect on memory. Studies have shown that in patients with dementia, singing improved memory and reduced depression.

So no matter your age, your talent or your skill, I’d recommend singing. Whether it’s in a choir, singing along with your favorite song in the car, hitting the karaoke bar, or making up silly songs in the shower, it will make you feel healthy, happy and hilarious!

Picture of people singing in a choir
Northwest Firelight Chorale singing “The Sleigh”
Photo Credit: Jonathan Vogel

Sources (not quoted in the text):

You’re Brain and Singing: Why singing in a Choir Makes You Happier

The New Science of Singing Together

Table Wobble

It’s one of the most annoying things ever (#FirstWorldProblems): a wobbly table. And no matter how hard you try, putting bits of paper or cardboard coasters under one of the legs, tightening screws, or just giving up and eating on the floor, you’ll never be left satisfied.

Till now.

In comes math – the solution to (almost) everything!

The Mathematical Solution to the Wobbly Table

As with many things in math, we start by making some assumptions. Let’s imagine your sitting at a 4-legged table that is really well made – so the legs are actually equal in length. You are, however, sitting on some pretty uneven ground, your table is very wobbly and has already caused you to spill your coffee.

You’ve tried putting a bit of paper under the table, maybe a paper coaster. For a while, this works. But eventually, the paper gets compressed and you’re back to wobbling.

But there is a solution: just turn (not flip!) the table! Somewhere on the way to a 90-degree turn, you’ll find an equilibrium!

Image of a table with an arrow indicating it'll be turned.
Oh, how the tables are turning.

I know, it sounds unbelievable. Magical even. But there is math to back it all up!

Consider the height of leg number 1 (the unstable one) off the floor as h. At the start of your struggles, this height is larger than one (because it’s off the floor, remember!), so h(t=0) > 0.

While turning the table 90 degrees, at some point that leg would move “under” the surface of the floor, if it could. So at some point h(t) < 0.

There a mathematical theorem that we can now turn to for help: the mean value theorem. This states that if you have a continuous function that is positive on one end, and negative on the other, there must be (at least) one zero value! This makes total sense if you think about it: to get from A (positive) to B (negative) in a continuous manner, you’ll have to pass through zero!

Graphical representation of the mean value theorem.
Illustration of the mean value theorem, with red dots passing through zero.

Of course “Mathematics is all theoretical”. Theoretically, turning the table will unwobble your table but there are many situations where it might not work: maybe your table isn’t perfectly square, or does not have four legs, or cannot be moved.

In that case:

“If you can’t move the table, you’ll have to use the paper trick.”

Good ol’ reliable paper.


Watch the explanation here:

Building confidence through comedy

A few months ago, I invited the wonderful Kyle Marian to Seattle to give a comedy workshop at GeekGirlCon.

Within 90 minutes, I saw a group of people going from being complete strangers to co-writers, participants going from hesitant to join the activities to laughing, and teenagers going from shy and reserved to stepping up on a stage to talk for 3 minutes; it was amazing to see community and confidence grow in such a short time.

What Kyle did extremely well during this workshop, in my opinion, was create a safe space for people to mess up – which essentially is crucial for building confidence.

Creating a safe space to fail

When you watch a comedy special, it looks so easy. The stand-up comedian moves smoothly between storytelling and jokes, seamlessly adding in crowd work, impeccably times their silences and their words to create space for laughs.

What you don’t see is all the work that went behind it, from jotting down random ideas in a notebook to having jokes fall flat at open mics. Comedy is hard work, and part of that hard work is being okay with things going wrong once in a while.

What I’ve found very useful, from my own experience as well as witnessing the GeekGirlCon workshop, is having a safe space to fail. A space where you don’t have to feel scared to voice out that random idea that you think won’t work, a space with such a supportive audience that by just forgetting what you were going to say, you’ll get an encouraging clap or laugh.

In the workshop, this is what Kyle had created: if an idea didn’t quite work, it wasn’t the end of the world but other participants would help to find a way to make the joke work, add an extra quip, add repetition (three is the charm), all while being super-supportive.

Comedy for Confidence

The first time I stood on a stage for stand-up, I did so through BrightClub Dundee. Two weeks earlier, I had gone through their training – a professional comedian taught us the ins and outs of comedy: how to write jokes but also how to hold the mic like a “real comedian.” I thought I’d just attend the training and maybe be a better presenter.

But after the training, I had an idea for a set and voila, there I was, on a stage, strumming Bruno the Blue Ukelele, adrenaline rushing through my veins.

It’s terrifying and exhilarating. Ask any comedian, they probably still get nervous before getting on a stage, no matter how long they’ve been doing this. But in another way, it really builds confidence. Standing there in front of 10, 30, 50 or 100 people, and getting that first laugh, you feel like you can take on anything.

And it’s even more of a confidence-boost to feel like you’re empowering others.

Geeky Comedy Seattle

So, I started this thing. I wanted to create a space for alternative, geeky, comedy (because that’s what I do) in a city that is, inherently alternative and geeky (Take that, Portland!)

Enter Geeky Comedy Seattle. It’s still early days, but if you want to come to a fail-safe place (as in, it’s a safe place to fail!), you can join us on February 1st month for a workshop and/or open mic, or come see the next show.

Enough with the shameless self-promotion.

Cuppa Coffee

I’m living the freelancer life: sitting in a coffee shop, typing away on my MacBook (obviously), having a cup of coffee. Here in Seattle, generally considered the coffee capital of the United States, I’m never alone.

More than half of adult Americans drink coffee every day, so there must be something amazing about coffee that makes some people consider it liquid gold, that you can drink*. I’ve heard people joke “don’t talk to me before my cup of coffee” as an excuse for their morning moodiness. I’ve also heard said that coffee is the “fuel of science”.

Let’s dive into what makes coffee so delicious, and – dare we say? – addictive**!

The Chemistry of Coffee

Coffee is a chock-full of compounds that contribute to its taste. Depending on the origin and roast of the beans, the exact composition of a cup of coffee will vary, but in general, these are the molecules that contribute to the taste of coffee:

  • Caffeine
    When you think coffee, you think “caffeine” (unless you’re a fervent decaf drinker). Caffeine is unsurprisingly part of what makes coffee so lovable, though mostly for its neurostimulative properties rather than its taste. Caffeine is actually a plant toxin, though not toxic to (most) humans, and on its own, it tastes bitter and basic (as in “alkaline and slightly soapy”), but it combines with other molecules in coffee to create new tastes – for example, caffeine reacts with proteins in milk creating a creamy, buttery taste.
Person telling a "blond" coffee bean: Pumpkin Spice Latte, Really? You're so basic!
(I’m good at art.)
  • Acids
    The “sour” taste of coffee is due to acidic compounds, which include quinic acid, citric acid, chlorogenic acid, phosphoric acid, and acetic acid. While you likely don’t really enjoy sour coffee, these acids balance nicely with all the other tastes in coffee. In addition, some acids, such as 3,5 dicaffeoylquinic acid, act as an antioxidant – so healthy too!
  • Theophylline
    More healthy stuff in coffee: theophylline is a molecule related to caffeine and is a mild stimulant that acts as a muscle relaxant (counteracting the jitteriness you might get from caffeine). It’s not only present in coffee, but also in some medicines to treat the symptoms of bronchitis and asthma.
  • 2-ehtylphenol
    This molecule gives coffee its slightly medicinal, tarry smell – and contributes to flavor because flavor is a combination of taste and smell (which you would know if you’ve ever had a cold!). Coffee might smell medicinal, and have some healthy compounds, but it’s not actually a medicine.
  • Niacin
    That said, niacin, or vitamin B3, is another molecule in coffee that is generally good for your health. It’s the result of another compound, trigonelline, breaking down at higher temperatures. Trigonelline itself gives coffee a sweet, earthy taste. So, double wammy, good taste and healthy vitamins!
  • Acetylmethylcarbinol
    This long named-chemical is present in butter and makes coffee taste buttery (wow!).

While those are the main contributors to the flavor of coffee, there are a lot more molecules present in coffee, some of which in large quantities might even sound unpleasant (looking at you, demethyl disulfide which smells like garlic, and putrescine which smells just like it sounds – putrid), but flavor is a matter of balancing all those tastes together into the complex and delicious flavor of coffee.

More caffeine, please!

One of the reasons people seem so addicted dependent on coffee is due to that bitter/basic molecule: caffeine.

Caffeine is a natural neurostimulant. That means that it activates the central nervous system, in this case by blocking the chemical pathway that usually makes you feel drowsy: the adenosine pathway. Caffeine binds to adenosine receptors, blocking its normal function (binding to adenosine) and therefore making you feel more awake and alert.

Some people don’t have the adenosine receptors that caffeine binds to, making them “immune” to the effects of coffee. Maybe you have that one friend that drinks liters of coffee without feeling the effects. This could be because they don’t have the right adenosine receptors, or because they produce more of a protein called CYP1A2, which regulates how efficiently someone processes coffee. People who produce a lot – this is about 10% of the population – can process caffeine really quickly.

Caffeine “addiction”

“I’m so addicted to coffee.” – You might have heard it from your co-worker, who was acting a bit snippy before having their cup of coffee, or you’ve said it yourself because you wanted an excuse for your morning mood.

Caffeine stimulates your nervous system by interfering with the signaling pathway in your neurons that make you sleepy. The more coffee you drink, and the more regularly, the more you get used to the effect it has on your body and the more you will need to achieve the same state of non-sleepiness.

Technically, this is classified as a “physical dependency“, because it does not stimulate any reward pathways in your brain – as addictive substances such as drugs do.

However, suddenly cutting out all caffeine will probably be unpleasant (unless you’re one of those immune-to-caffeine people). Ages ago***, I suddenly stopped drinking coffee after 6 weeks of studying and exams – during which I had multiple cups of coffee a day. I remember being very headachy and miserable and vowed to manage my coffee intake better. Other “withdrawal” symptoms might include caffeine headaches, fatigue, muscle pains, nausea and dysregulated sleep leaving you tired during the day.

Though, if we’re being fair, quitting coffee won’t really affect your life much more than making you irritable for a while.

The stages of coffee addiction - the character is looking increasingly jittery: Dunkin Donuts, Lattes, Espresso, Cold Brew, Nitro cold brew, snorting beans and screaming
Unless you’re snorting it.
(By Tommy Siegel)

So is caffeine good or bad?

A bit of both.

A dose of caffeine can boost your concentration, increase alertness and give you the energy you need to write a blog post on caffeine and sleep. On the other hand, it might mean you can’t fall asleep at night, or the sleep you have is of lesser quality.

Looking at long term effects, there is some evidence that suggests that caffeine consumption decreases the risk of some types of cancer – such as liver, mouth, and throat – and protects against cardiovascular disease, stroke, and Parkinson’s disease. And in small doses, it can boost your long term memory.

There’s a caveat emptor**** though. Caffeine messes with your sleep, and sleep is important for memory and learning processes. So interfering too much with normal sleeping patterns can have an adverse effect on your long term memory. In addition, it is essentially a psychoactive substance and that jittery short term effect we mentioned earlier? That’s a small step towards anxiety.

It is generally advised to stick to 300-400 mg of caffeine a day (most caffeinated beverages have somewhere between 50 and 200 mg) and avoid caffeine after 2 pm, as it will likely affect your sleep!

Another thing to note is that caffeine is present in other things as well, including soda’s tea, and chocolate. For a 1 oz bar of dark chocolate, there is about 12 mg of caffeine. Even decaf coffee still has a little bit of caffeine in it!

Where does my coffee come from?

Image of coffee fruit growing on a tree
Coffee fruit on a coffee fruit tree. Merry merry fruit of the bush is he?
Photo by Gerson Cifuentes on Unsplash

The first step of the tree-to-cup process is picking the coffee fruit, which is called coffee cherries and looks a little bit like a cranberry. After the fruit part of the coffee is removed, the coffee beans are dried in the sun. These dried coffee beans are called green beans. The green beans are what is sent to coffee roasters, who roast the beans. These roasted beans are ground down and used to make coffee.

"Coffee Roast", comedian telling a coffee bean: Yo momma's so fat, they call her robusta!
(Still good at art. )

Coffee is grown in countries in Latin-America, Central and East Africa, India and throughout Sout-East Asia. The biggest coffee exporters are Brazil, Vietnam, and Indonesia.

Seattle and coffee

Though Seattle houses the headquarters of Starbucks and is known as the coffee capital, a 2018 study claims otherwise. Apparently, New York is the best city for coffee lovers as it has the highest concentration of coffee shops and cafes. And Seattle’s most notorious rival, Portland, has the highest number of coffee manufacturers per capita. Ugh.

Americans aren’t even the highest coffee consumers, by far. According to Euromonitor International, the top coffee consumers in the world are in Finland, consuming 12 kg (or 21.2 pounds) of coffee per person per year (by dry weight). Compare that to the US, where on average 3.1 kg (or 6.8 pounds) of coffee beans are consumed per person per year.

That said, my battery is running low and I’m out of coffee.

* “If everyone jumps off a bridge, will you jump too?” – every mother ever.

** No, we daren’t. (We’ll get to why later.)

*** Eh, not that many, I’m not that old.

**** “Buyers beware.”

Sources and inspiration:

This post is a compilation of several blog posts I wrote for Decafino, but I also gained inspiration from the following sources:

Happy New Decade?

We’re two days into 2020. Just a few days ago, you couldn’t go online without seeing some recap of the last decade, or go anywhere without people jokingly saying “see you next year! Oh, next decade!”

And there I’d be, suppressing the urge to go “Well, actually…” and point out that because our calendar started in the year 1 A.D., wouldn’t the next decade start on January 1st, 2021? A year from now?

Why does the year even start on Jan 1st?

The first assumption is that everyone uses the same calendar: the Gregorian calendar.

In October 1582, Pope Gregory XIII introduced the Gregorian calendar as an update to the Julian calendar. Both are solar calendars, i.e. it starts counting when the sun moves through a fixed point, and a year would last ~365 days. This is different from a lunar calendar – based on the cycles of the moon in which a month (or moonth?) would be 28 days – that would not nicely sync up with the seasons.

In the Gregorian calendar, the astronomical cycle of the earth around the sun, which is 365.2425 days long, is taken into account by skipping a leap year every 100 years. Sort of; this approximation has an error of one day every 3,030 years, or 26 seconds a year, even with the skipping leap years every 100 year but not on the 400s*.

For most things, most of the world has adopted the Gregorian calendar for their daily life somewhere between 1582 and the early 20th century, even if cultural and religious calendars were kept in parallel.

If you think too much about it, months seem completely arbitrary – except maybe solstices landing on sort of the same date – and other systems, like the Equal Month Calendar which has 13 28-day months plus an extra day or two depending on leap years – sounds more plausible.

But for all intents and purposes, the whole world has agreed that the year starts on January 1st, based on the ideas of a Medieval Pope. And when decades start would depend on Christianity too.

The year 1 A.D.

Our current calendar starts counting from 1 A.D. (or Anno Domini), with the year 1 the year Jesus was allegedly born.

Allegedly, because it wasn’t until 525 A.D. that the year was set by Dionysius Exiguus when he was devising his method to calculate Easter. Historians believe that Jesus was actually born at least a few years earlier, and not necessarily on Christmas day. In any case, 1 A.D. has now generally been adopted as “the start of counting of years” and sometimes referred to as 1 C.E. (common era) to avoid religious connotations.

But the most interesting thing about 1 A.D. – for me at least – is that there is no year 0.

The Roman numeral system had no concept of zero, and it wasn’t until the eighth century that the Arabic Numeral for zero was introduced in Europe – and eventually used widely in the seventeenth century.

If that’s the case, did we really just start a new decade?

Counting from zero

A decade is simply “a span of 10 years,” so new decades are constantly starting. We don’t celebrate them typically, except for the decades of our lives, and those that are generally considered in the calendar.

In the 20th century, we started referring to decades as groups of years having the same digits: the years 1990-1999 are referred to as the nineties (dixit nineties kid) as opposed to counting from 1 to 10 (in which case the nineties would have been from 1991-2000). You would think this is the more “mathematically correct” way of counting, but even in programming, there are systems that start counting from 0 just as a convention.

Every 10 years, and definitely at the start of the new millennium, the same discussion occurs: when do we start counting a decade/century/millennium?

A poll from a month ago shows that most Americans (64%) saw the new decade start yesterday, while about a fifth (19%) were not sure. Only 17% answered the new decade will start on January 1, 2021.

In my opinion, it doesn’t really matter. Having a new decade start on a year ending with a 0 looks nicer, and in the 21st century means we can make fun novelty glasses where the lenses fit in the zeros. I’ll continue to be pedantic and say that the decade doesn’t start until next year if only so I can forget about it and not do that “looking back on a decade” thing, ever.

In any case, whether you think the year started yesterday, or the decade, or if it was just a regular old day, have a marvelous 2020!

From Strange Planet by Nathan W. Pyle

*The rule is that every year that is divisible by four is a leap year, except for years that are divisible by 100, with the exception on that exception for years that are divisible by 400.

Sources: in-text links